
READING TIME • 13 MIN

A Love Letter to React

We're Fly.io. React, Phoenix, Rails, whatever you
use: we put your code into lightweight microVMs
on our own hardware in 26 cities and counting.
Check us out—your app can be running close to
your users within minutes.

It's hard to overstate the impact React has had since its
release in 2013. For me, React came with a few revelations.
First was a reactive HTML-aware component model for
building UIs. Second was colocated markup directly in the
app code. Third, it focused on efficiency in a world where
SPAs were increasingly heavy-handed.

It was also something that I could grok in a weekend.

My previous attempts at drive-by learning other reactive
frameworks of the day were not so successful. Phoenix

Annie Ruygt

https://twitter.com/share?text=A%20love%20letter%20to%20React&url=https://fly.io/blog/love-letter-react/&via=flydotio
http://news.ycombinator.com/submitlink?u=https://fly.io/blog/love-letter-react/&t=A%20love%20letter%20to%20React
http://www.reddit.com/submit?url=https://fly.io/blog/love-letter-react/&title=A%20love%20letter%20to%20React
https://fly.io/docs/speedrun/
https://fly.io/
https://fly.io/blog/

borrowed a lot from React when we first shipped LiveView
in 2018, but only recently have we gone all-in with an
HTML-aware component system in Phoenix 1.7.

It's hard to imagine building applications any other way.
What follows is a heartfelt homage to React's impact on the
frontend and backend world, and how Phoenix landed
where it did thanks to the revelations React brought almost
ten years ago.

With LiveView, I was inspired by React components and
their beautifully simple programming model. A component is
an object that defines a render function, and returns some
HTML (or in later versions, a function that renders HTML�.
That function makes use of component state, and
whenever a state change occurs the render function is
called again.

Reactive Component System

class Example extends React.Component {

 render(){

 return (

 <div>

 <p>You clicked {this.state.count}

times</p>

 <button onClick={() =>

this.setState({count: this.state.count +

1})}>

 Click me

 </button>

 </div>

)

 }

 constructor(props){

 super(props)

This was such a simple model to understand when coming
into React for the first time. Here we have a React
component with some state, and a function. The
function returns some HTML, and calls when a
button is clicked. Any time is called, React will call

 again, and the UI updates. Easy peasy.

We borrowed from this with LiveView by taking that model
and slapping it on the server in a stateful process:

 this.state = {count: 0}

 }

}

render

setState

setState

render

defmodule DemoWeb.CounterLive do

 use Phoenix.LiveView

 def render(assigns) do

 ~H"""

 <div>

 <p>You clicked <%= @count %>

times</p>

 <button phx-click="inc">Click

me</button>

 </div>

 """

 end

 def mount(_, _, socket), do: {:ok,

assign(socket, count: 0)}

 def handle_event("inc"), do: {:noreply,

update(socket, :count, &(&1 + 1))}

end

I've talked previously about what this kind of programming
model on the server enables, like the fact we don't write
bespoke routes, controllers, and serializers, or JSON APIs or
GraphQL endpoints. But here we're just appreciating how
easy this model is to understand. In a world of ever-
increasing framework complexity, React's take on
interactive applications was a breath of fresh air that we
were quick to borrow.

Another choice React made was also extremely contentious
at the time: putting HTML right in with your app code.
People hated it. But React was right.

Like many folks ten years ago, you might still be thinking
"HTML in your app code?! Are we back to the 2000's PHP
days of mixing code and markup together in a file? And we
call this progress?"

These kind of takes were common. They also missed the
point. Unlike the PHP days of yore, React applications
weren't a string concatenation of app code, HTML, and
business logic masquerading as a web application.

React's JSX templates place the most coupled pieces of UI
together: the markup and stateful code supporting that
markup. Think about it: you have a bunch of variables
(state) in your app code that are also needed in your
template code for UI rendering or behavior. You also have a
bunch of UI interactions in your templates that make it back
into app code—like button clicks. These two things are
necessarily tightly coupled. Change either side of the
contract and the other side breaks. So React made the
wise step to put those tightly coupled things together.

This brings us to a lesson React taught me that I later
carried over to Phoenix: if two pieces of code can only

JSX: A Colocation Revelation

https://fly.io/blog/liveview-its-alive/

exist together, they should live together. Or to think about it
another way, if two pieces of code must change together,
they must live together.

There's no guesswork on what happens if I change some
LiveView state or LiveView template variables because they
live in the same file. I also don't have to search throughout
the codebase to find which coupled-but-distant template
file needs to be added or changed to accommodate the
code I'm writing.

Now, there are times where it's not practical to write app
code and markup in a single file. Sometimes template reuse
or a large document means it makes more sense to have a
separate template. In these cases, you want the next best
thing: colocated files. In general, the tightly coupled parts of
your application should be as close as practically possible. If
not the same file, then the same directory, and so on.

React also popularized HTML-aware components with their
JSX template system. On top of writing HTML in your
component's app code, you call components from markup in
an HTML tag-like way.

This is more than a cute way to make function calls. It's also
not something I appreciated right away. The advantage of
this approach is a natural composition of static HTML tags
alongside dynamic components and logic. Large HTML
structures quickly lose their shape when mixing dynamic
code and reusable UI with tags—an issue with Ruby or
Elixir-like templating engines.

For example, imagine you need to render a collection of
items, then within that collection, conditionally call some
other template code. With Rails or older Phoenix style

HTML-aware Components as

Extensible Building Blocks

<%=

 templates, the markup structure almost entirely gets lost
in the mess of branches:

This has a few problems. First, the markup structure is
completely lost when mixing code branches and

%>

<h1><%= @title %></h1>

<table class="border border-gray-100

rounded-lg">

 <thead>

 <%= for {_field, label} <- @fields do

%>

 <th><%= label %></th>

 <% end %>

 </thead>

 <tbody>

 <%= for row <- @rows do %>

 <tr>

 <%= for {{field, label}, i} <-

Enum.with_index(@fields) do %>

 <td>

 <%= if i == 0 do %>

 <div class="text-bold">

 <%= row[field] %>

 </div>

 <% else %>

 <div class="text-center p-

4">

 <%= row[field] %>

 </div>

 <% end %>

 </td>

 <% end %>

 </tr>

 <% end %>

 </tbody>

</table>

comprehensions.

This makes template editing a brittle and frustrating
experience. If our goal is to dynamically build markup, why
does the markup structure get lost in the mix? It gets worse
when we try to encapsulate this table into a reusable piece
of UI. The best we could do prior to adopting React's
approach is bespoke functions or templates that hide the
entire table from the caller:

Then the caller can render the component:

 </div>

 <% end %>

 </td>

 <% end %>

 </tr>

 <% end %>

 </tbody>

def table(assigns) do

 ~H"""

 <h1><%= @title %></h1>

 <table class="border border-gray-100

rounded-lg">

 ...

 </table>

 """

end

This works, but extensible UI components are all but
impossible. The moment we want to customize one aspect
of the table, we need to write another template like

 which slightly alters the cells or adds more
actionable links to another cell, and so on. If we tried to
make it extensible without an HTML-aware component
primitive, we'd end up with something like:

Our bespoke functions now mask the HTML structure,
which makes it difficult to figure out what's happening. We
also can't easily encapsulate table row and cell styling.

<%= table(title: "Users", rows: @users,

fields: [name: "Name", bio: "Bio"]) %>

user_table

<%= table(title: "Users", rows: @users,

fields: [name: "Name, bio: "Bio"]) do %>

 <%= for row <- @rows do %>

 <tr>

 <%= for {field, label} <- @fields

do %>

 <%= user_cell(user: row, field:

field, label: label) %>

 <% end %>

 <td class="actions">

 <a href="..." data-

method="post">Confirm User

 <a href="..." data-

method="post">Ban User

 </td>

 </tr>

 <% end %>

<% end %>

Worse, we prevent the caller from passing their own
arbitrary block content to our components.

For example, imagine instead of a string "Users" as the table
title, the caller wanted to render HTML within the ,

such as a subtitle, icon, or even another component? With
template engines that only do string concatenation, passing
strings around prohibits all of this. A caller may try passing a
string of HTML instead, but it's a nonstarter:

Passing strings around for arbitrary content quickly breaks
down. It's not only terrible to write, but the user would have

<h1>

<%= table(title: """

 Listing Users

 #{icon(name: "avatar")}

 """,

 rows: @users, fields: [name: "Name,

bio: "Bio"])

do %>

 <%= for row <- @rows do %>

 <tr>

 <%= for {field, label} <- @fields

do %>

 <%= user_cell(user: row, field:

field, label: label) %>

 <% end %>

 <td class="actions">

 <a href="..." data-

method="post">Confirm User

 <a href="..." data-

method="post">Ban User

 </td>

 </tr>

 <% end %>

<% end %>

to forgo HTML escaping and carefully inject user-input into
their dynamic strings. That's a no-go.

React's JSX showed us a better way. If we make our
templating engine HTML-aware and component calls
become tag-like expressions, we solve the readability
issues. Next, we can allow the caller to provide their own
arbitrary markup as arguments.

React allows passing markup as an inner component block,
or as a regular argument ("prop" in React parlance) to the
component. For example, in React, one could write:

Later frameworks like Vue, and the Web Component spec
itself standardized and expanded this concept with the
"slot" terminology.

In Phoenix, HTML syntax for components along with slots
turns our mess of mixed HTML tags and strings into this
beautifully extensible UI component:

<Table

 rows={users}

 title={

 <h1>Listing Users</h1>

 }

/>

<div>

 <.table rows={@users}>

 <:title>Listing Users

</:title>

 <:col :let={user} label="Name"><%=

user.name %></:col>

 <:col :let={user} label="Bio"><%=

https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_templates_and_slots

The Phoenix HEEx template engine supports calling
components external to the current scope in a similar React
style, such as .

Phoenix also allows calling imported function components
directly with the notation.

In the table example above, we call the function with
arguments passed in a tag-like attribute syntax, just like in
React props. Next, the table accepts an internal block of
arbitrary markup, and we here we can make use of slots to
pass and information.

The neat thing about slots in Phoenix is the fact that they
are collection based. The caller can provide an arbitrary
number of entries, such as in our example. To render
a table, internally the component can simply iterate
over the s we passed for each , and "yield" back to
us the individual user resources. You can see this in action
via the syntax in the col entries.

The internal table can also iterate over the s to build the
s for the table head. What results is far more pleasant

to write than pure HTML and can be extended by the caller
without bespoke functions. The function component and
slot primitives allow us to encapsulate everything about
building tables in our UI in a single place.

Like React, you'll find that your Phoenix applications
establish a surprisingly small set of core UI building blocks
that you can use throughout your application.

user.bio %></:col>

 </.table>

</div>

<Table.simple>...</Table.simple>

<.component_name />

table

title col

<:col>

table

col row

:let={user}

col

<th>

Phoenix screams on Fly io

My SPA trials and tribulations began before React entered
this world. I've gone from jQuery spaghetti, Backbone.js,
Angular 1, Angular 2, Ember, and finally React. React
provided just the right amount of structure, while being quick
to pick up and get going with. It was also super fast.

React really pushed the industry forward with their virtual
DOM features. Instead of replacing large parts of the
browser's DOM with a freshly rendered template on any
little change, React kept a "virtual" DOM as a datastructure
that it was able to compute diffs against. This allowed
React to compute the minimal set of concrete DOM
operations required to update the browser when state
changes occur.

This was groundbreaking at the time.

Other SPA frameworks quickly followed suit with their own
optimizations. Server-side frameworks are a different
paradigm entirely, but they can learn a lot from React's
innovation. Phoenix certainly did.

For Phoenix, we borrowed these ideas, but we have this
pesky layer between the app and the client, known as the
network. Our problem set is quite different from React, but if

Phoenix screams on Fly.io.

Fly.io was practically born to run Phoenix. With
super-clean built-in private networking for clustering
and global edge deployment, LiveView apps feel
like native apps anywhere in the world.

Deploy your Phoenix app in minutes. →

Efficient at Its Core

https://fly.io/docs/elixir/

you squint, you can see all the same inspirations and
approaches we took in Phoenix LiveView's optimizations.

For example, on the server we only want to execute the
parts of the template that changed rather than the entire
template. Otherwise we're wasting CPU cycles. Likewise, we
only want to send the dynamic parts of the template that
changed down the wire instead of the entire thing to limit
latency and bandwidth. While we don't keep a virtual DOM
on the server, we do keep track of the static and dynamic
parts of the HEEx templates. This allows us to do efficient
diff-based rendering on the server and send down minimal
diffs to the client. Meanwhile, the client uses morphdom to
apply only the minimal patches necessary on the client.

The end result is this: a state change occurs in the LiveView
component tree, a diff of changes is computed on the
server with noops where possible, and the minimal diff of
changes is sent down the wire. On the client, we take those
changes and apply them via a minimal set of DOM
operations to efficiently update the UI. Sound familiar?

React changed the front-end game when it was released,
and its ideas have trickled up to the backend world. And no,
I don't mean React Server Components (but React is also
trickling up to the server too!�. Outside of Phoenix, you'll find
other backend frameworks now ship with their own HTML�
aware component system, such as Laravel's Blade
templates in the PHP space.

If you're a backend framework in 2022 and not shipping an
HTML-aware engine, it's time to follow React's lead. I can't
imagine Phoenix not landing where we did, and my only
regret is we didn't follow React sooner. Thank you React
for paving the way! ❤

React's Influence on the Backend

https://github.com/patrick-steele-idem/morphdom

COMPANY

About

Pricing

Jobs

ARTICLES

Blog

Phoenix Files
Laravel Bytes
Ruby Dispatch

RESOURCES

Docs

Support

Status

CONTACT

GitHub

Twitter

Community

LEGAL

Security

Privacy policy
Terms of service

Copyright © 2022 Fly.io

LAST UPDATED • NOV 2, 2022

Chris McCord

@chris_mccord

Previous post ↓

Logbook: October 21 to 28, 2022

https://fly.io/
https://fly.io/about/
https://fly.io/docs/about/pricing/
https://fly.io/jobs/
https://fly.io/blog/
https://fly.io/phoenix-files/
https://fly.io/laravel-bytes/
https://fly.io/ruby-dispatch/
https://fly.io/docs/
https://fly.io/docs/support/
https://status.flyio.net/
https://github.com/superfly/
https://twitter.com/flydotio
https://community.fly.io/
https://fly.io/docs/security/
https://fly.io/legal/privacy-policy
https://fly.io/legal/terms-of-service
https://twitter.com/share?text=A%20love%20letter%20to%20React&url=https://fly.io/blog/love-letter-react/&via=flydotio
http://news.ycombinator.com/submitlink?u=https://fly.io/blog/love-letter-react/&t=A%20love%20letter%20to%20React
http://www.reddit.com/submit?url=https://fly.io/blog/love-letter-react/&title=A%20love%20letter%20to%20React
https://twitter.com/chris_mccord
https://fly.io/blog/logbook-october-21-to-28-2022/

